Effect of Intermittent Cold Exposure on Brown Fat Activation, Obesity, and Energy Homeostasis in Mice

نویسندگان

  • Yann Ravussin
  • Cuiying Xiao
  • Oksana Gavrilova
  • Marc L. Reitman
چکیده

Homeotherms have specific mechanisms to maintain a constant core body temperature despite changes in thermal environment, food supply, and metabolic demand. Brown adipose tissue, the principal thermogenic organ, quickly and efficiently increases heat production by dissipating the mitochondrial proton motive force. It has been suggested that activation of brown fat, via either environmental (i.e. cold exposure) or pharmacologic means, could be used to increase metabolic rate and thus reduce body weight. Here we assess the effects of intermittent cold exposure (4°C for one to eight hours three times a week) on C57BL/6J mice fed a high fat diet. Cold exposure increased metabolic rate approximately two-fold during the challenge and activated brown fat. In response, food intake increased to compensate fully for the increased energy expenditure; thus, the mice showed no reduction in body weight or adiposity. Despite the unchanged adiposity, the cold-treated mice showed transient improvements in glucose homeostasis. Administration of the cannabinoid receptor-1 inverse agonist AM251 caused weight loss and improvements in glucose homeostasis, but showed no further improvements when combined with cold exposure. These data suggest that intermittent cold exposure causes transient, meaningful improvements in glucose homeostasis, but without synergy when combined with AM251. Since energy expenditure is significantly increased during cold exposure, a drug that dissociates food intake from metabolic demand during cold exposure may achieve weight loss and further metabolic improvements.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Divergent responses to thermogenic stimuli in BAT and subcutaneous adipose tissue from interleukin 18 and interleukin 18 receptor 1-deficient mice

Brown and beige adipocytes recruitment in brown (BAT) or white adipose tissue, mainly in the inguinal fat pad (iWAT), meet the need for temperature adaptation in cold-exposure conditions and protect against obesity in face of hypercaloric diets. Using interleukin18 (Il18) and Il18 receptor 1- knockout (Il18r1-KO) mice, this study aimed to investigate the role of IL18 signaling in BAT and iWAT a...

متن کامل

Overexpression of nuclear receptor SHP in adipose tissues affects diet-induced obesity and adaptive thermogenesis.

The orphan nuclear receptor small heterodimer partner (SHP) regulates metabolic pathways involved in hepatic bile acid production and both lipid and glucose homeostasis via the transcriptional repression of other nuclear receptors. In the present study, we generated fat-specific SHP-overexpressed transgenic (TG) mice and determined the potential role of SHP activation, specifically in adipocyte...

متن کامل

Thioesterase superfamily member 1 suppresses cold thermogenesis by limiting the oxidation of lipid droplet-derived fatty acids in brown adipose tissue

OBJECTIVE Non-shivering thermogenesis in brown adipose tissue (BAT) plays a central role in energy homeostasis. Thioesterase superfamily member 1 (Them1), a BAT-enriched long chain fatty acyl-CoA thioesterase, is upregulated by cold and downregulated by warm ambient temperatures. Them1 (-/-) mice exhibit increased energy expenditure and resistance to diet-induced obesity and diabetes, but the m...

متن کامل

Temperature matters with rodent metabolic studies

An illusory goal in obesity therapeutics is to increase energy expenditure without provoking a compensatory rise in food intake. With the (re)discovery that functional and inducible brown fat exists in adult humans, studies aimed at understanding the physiology and activation of brown adipose tissue (BAT) have proliferated. Yet, intermittent cold exposure alone is often accompanied with an incr...

متن کامل

Intermittent Cold Exposure Enhances Fat Accumulation in Mice

Due to its high energy consuming characteristics, brown adipose tissue (BAT) has been suggested as a key player in energy metabolism. Cold exposure is a physiological activator of BAT. Intermittent cold exposure (ICE), unlike persistent exposure, is clinically feasible. The main objective of this study was to investigate whether ICE reduces adiposity in C57BL/6 mice. Surprisingly, we found that...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014